Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-bromido-bis(\{2-[(4,6-dimethyl-pyrimidin-2-yl)disulfanyl]-4,6-dimethyl-pyrimidine- $\left.\kappa^{2} N^{1}, S^{2}\right\}$ copper(I))

Ruthairat Nimthong, ${ }^{\text {a }}$ Chaveng Pakawatchai ${ }^{\text {a* }}$ and Yupa Wattanakanjana ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Thailand
Correspondence e-mail: chaveng.p@psu.ac.th

Received 30 March 2012; accepted 15 April 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.028 ; \omega R$ factor $=0.077$; data-to-parameter ratio $=15.1$.

The title dinuclear complex, $\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}\right]$, is located about an inversion center. The Cu^{1} ion is coordinated in a distorted tetrahedral geometry by two bridging Br atoms in addition to an N and an S atom from the 2-[(4,6-dimethyl-pyrimidin-2-yl)disulfanyl]-4,6-dimethylpyrimidine ligand. In the crystal, $\pi-\pi$ stacking interactions are observed with a centroid-centroid distance of 3.590 (2) \AA.

Related literature

For potential applications of heterocyclic thioamides and their metal complexes, see: Battistuzzi \& Peyronel (1981); Holm \& Solomon (1996); Cox et al. (2006); Falcomer et al. (2006); Sevier \& Kaiser (2006); Saxena et al. (2009). For related structures, see: Lemos et al. (2001); Aslanidis et al. (2004); Freeman et al. (2008).

Experimental

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}\right]$
$M_{r}=843.68$
Monoclinic, $C 2 / c$
$a=15.3351$ (7) \AA
$b=15.3898$ (7) A
$c=14.3398$ (7) \AA
$\beta=109.178$ (1) ${ }^{\circ}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: integration
(SADABS; Bruker, 2003)
$T_{\text {min }}=0.425, T_{\text {max }}=0.662$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.077$
$S=1.04$
2732 reflections
181 parameters
$V=3196.4(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=4.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.21 \times 0.18 \times 0.10 \mathrm{~mm}$

12339 measured reflections 2732 independent reflections 2344 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

55 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH-CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5449).

References

Aslanidis, P., Cox, P. J., Divanidis, S. \& Karagiannidis, P. (2004). Inorg. Chim. Acta, 357, 4231-4239.
Battistuzzi, R. \& Peyronel, G. (1981). Can. J. Chem. 59, 591-596.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cox, P. J., Kaltzoglou, A. \& Aslanidis, P. (2006). Inorg. Chim. Acta, 359, 31833190.

Falcomer, V. A. S., Lemos, S. S., Batista, A. A., Ellena, A. \& Castellano, E. E. (2006). Inorg. Chim. Acta, 359, 1064-1070.

Freeman, F., Po, H. N., Ho, T. S. \& Wang, X. (2008). J. Phys. Chem. A, 112, 1643-1655.
Holm, R. H. \& Solomon, E. J. (1996). Chem. Rev. 96, 2239-2341.
Lemos, S. S., Camargo, M. A., Cadoso, Z. Z., Deflon, V. M., Försterling, F. H. \& Hagenbach, A. (2001). Polyhedron, 20, 849-854.
Saxena, A., Dugan, E. C., Liaw, J., Dembo, M. D. \& Pike, R. D. (2009). Polyhedron, 28, 4017-4031.
Sevier, C. S. \& Kaiser, C. A. (2006). Antioxid. Redox Signal. 8, 797-811.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Di- μ-bromido-bis(\{2-[(4,6-dimethylpyrimidin-2-yl)disulfanyl]-4,6-dimethyl-pyrimidine- $\left.\left.\kappa^{2} N^{1}, S^{2}\right\} \operatorname{copper}(\mathrm{I})\right)$

Ruthairat Nimthong, Chaveng Pakawatchai and Yupa Wattanakanjana

Comment

The studies of cooordination multidentate ligands such as heterocyclic thioamides, in complexes of closed-shell d^{10} metal ions, have been shown attention from a number of researchers (Saxena et al., 2009; Cox et al., 2006; Falcomer et al., 2006) because of their interesting biochemical properties and presence in active sites of many metalloproteins (Holm \& Solomon, 1996; Battistuzzi \& Peyronel, 1981). Particularly, the formation of disulfide bonds is an essential step in the folding and assembly of the extracellular domains of many membrane and secreted proteins which are important features of the structure of many proteins (Sevier \& Kaiser, 2006).
The molecular structure of the title compound is shown in Fig. 1. The complex is dinuclear in which the Cu^{1} ions adopt distorted tetrahedral geometries. There is a binuclear μ, μ^{\prime}-dibromobridged $\mathrm{CuBr}_{2} \mathrm{Cu}$ core. $\mathrm{The} \mathrm{Cu}-\mathrm{S}$ and $\mathrm{Cu}-\mathrm{N}$ distances are similar to those reported for other thioamide containing complexes (Aslanidis et al., 2004; Lemos et al., 2001) and the disulfide bond distances is shorter than that reported in a related compound with a disulfide bond (Freeman et al., 2008). The 'bite' angle $\mathrm{S}-\mathrm{Cu}-\mathrm{N}$ angle is $90.77(7)^{\circ}$. The molecule lies on a crystallographic inversion center which is at the center of the $\mathrm{CuBr}_{2} \mathrm{Cu}$ core with a $\mathrm{Cu} \cdots \mathrm{Cu}$ separation of 2.7802 (7) \AA. This value is close the sum of the van der Waals radii for two Cu atoms ($2.8 \AA$). In the crystal $\pi-\pi$ stacking interactions with a centroid to centroid distance of 3.590 (2) \AA are observed (Fig. 2). In addition, fairly short $\mathrm{C}\left(s p^{3}\right)-\mathrm{H} \cdots \mathrm{N}$ intermolecular distances $(\mathrm{H} \cdots \mathrm{N}=2.67 \AA$, $\mathrm{C}\left(s p^{3}\right)-\mathrm{N}=3.41 \AA$ and $\left.\mathrm{C}\left(s p^{3}\right)-\mathrm{H} \cdots \mathrm{N}=134.2^{\circ}\right)$ are observed (Fig. 3).

Experimental

4,6-Dimethyl-2-pyrimidinethiol, dmpymtH, ($0.07 \mathrm{~g}, 0.50 \mathrm{mmol}$) was dissolved in $30 \mathrm{~cm}^{3}$ of methanol at $343-348 \mathrm{~K} . \mathrm{CuBr}$ $(0.1 \mathrm{~g}, 0.70 \mathrm{mmol})$ was added and the mixture was stirred for 5 h . The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline complex, which was deposited upon standing for several days, was filtered off and dried in vacuo (yield 75\%).

Refinement

The H atoms bonded to C atoms were constrained with a riding model of $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The DELU instruction in SHELXL (Sheldrick, 2008) was used without any further parameters. This sets up 'rigid bond' restraints for all non-hydrogen atom. The dafault standard deviation values are 0.01 and 0.01 . This appears to have little effect but it does affect the no of restraints (55) listed in the CIF.

Computing details

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figure 1
The molecular structure with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are related by $(-x+1 / 2,-y+1 / 2,-z+1)$.

Figure 2
Part of the crystal structure with $\pi-\pi$ stacking interactions shown as dashed lines.

Figure 3

Part of the crystal structure with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds shown as dashed lines.

Di- μ-bromido-bis(\{2-[(4,6-dimethylpyrimidin-2-yl)disulfanyl]-4,6- dimethylpyrimidine- $\left.\left.\kappa^{2} N^{1}, S^{2}\right\} \operatorname{copper}(\mathrm{I})\right)$

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}\right]$
$F(000)=1680$
$M_{r}=843.68$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=15.3351$ (7) \AA
$b=15.3898$ (7) \AA
$c=14.3398$ (7) \AA
$\beta=109.178(1)^{\circ}$
$V=3196.4$ (3) \AA^{3}
$Z=4$
$D_{\mathrm{x}}=1.753 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 16645 reflections
$\theta=1.9-24.7^{\circ}$
$\mu=4.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colorless
$0.21 \times 0.18 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: integration
(SADABS; Bruker, 2003)
$T_{\text {min }}=0.425, T_{\text {max }}=0.662$

> 12339 measured reflections
> 2732 independent reflections
> 2344 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.024$
> $\theta_{\max }=24.7^{\circ}, \theta_{\min }=1.9^{\circ}$
> $h=-18 \rightarrow 18$
> $k=-18 \rightarrow 17$
> $l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.077$
$S=1.04$
2732 reflections
181 parameters
55 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0412 P)^{2}+3.1838 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1A	0.12116 (19)	0.06625 (19)	0.6388 (2)	0.0437 (7)
C2A	0.0939 (2)	-0.0746 (2)	0.5935 (3)	0.0541 (8)
C3A	0.1153 (2)	-0.0561 (2)	0.5100 (3)	0.0559 (8)
H1A	0.1118	-0.0994	0.4637	0.067*
C4A	0.1417 (2)	0.0265 (2)	0.4949 (2)	0.0491 (7)
C5A	0.0690 (3)	-0.1640 (2)	0.6172 (4)	0.0806 (12)
H2A	0.0531	-0.1622	0.6766	0.097*
H4A	0.1206	-0.2022	0.6264	0.097*
H3A	0.0172	-0.1849	0.5637	0.097*
C6A	0.1667 (3)	0.0518 (3)	0.4062 (3)	0.0738 (11)
H7A	0.1835	0.1121	0.4107	0.089*
H5A	0.1147	0.0423	0.3477	0.089*
H6A	0.2178	0.0173	0.4033	0.089*
C1B	0.0927 (2)	0.3281 (2)	0.6662 (2)	0.0444 (7)
C2B	0.0657 (2)	0.4721 (2)	0.6545 (2)	0.0535 (8)
C3B	-0.0270 (2)	0.4533 (2)	0.6114 (2)	0.0572 (8)
H1B	-0.0700	0.4979	0.5910	0.069*
C4B	-0.0549 (2)	0.3680 (2)	0.5989 (2)	0.0534 (8)
C5B	0.1020 (3)	0.5630 (2)	0.6741 (3)	0.0741 (11)
H2B	0.1679	0.5614	0.7044	0.089*
H4B	0.0749	0.5914	0.7174	0.089*
H3B	0.0866	0.5943	0.6129	0.089*
C6B	-0.1546 (2)	0.3429 (3)	0.5541 (3)	0.0743 (11)
H5B	-0.1599	0.2807	0.5516	0.089*
H6B	-0.1787	0.3661	0.4885	0.089*
H7B	-0.1890	0.3658	0.5937	0.089*
Cu 1	0.20241 (3)	0.20852 (2)	0.55473 (3)	0.05128 (14)
N1A	0.09541 (17)	-0.01146 (17)	0.65843 (19)	0.0522 (6)
N2A	0.14596 (16)	0.09016 (15)	0.56177 (17)	0.0420 (5)
N1B	0.12747 (18)	0.40741 (17)	0.68337 (19)	0.0515 (6)
N2B	0.00657 (18)	0.30262 (16)	0.62617 (19)	0.0491 (6)
S1A	0.12183 (7)	0.14055 (6)	0.73360 (6)	0.0591 (2)
S1B	0.18435 (6)	0.24973 (5)	0.70698 (6)	0.0506 (2)
Br1	0.13259 (2)	0.31106 (2)	0.42440 (3)	0.05795 (13)

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1A	$0.0383(15)$	$0.0440(16)$	$0.0466(16)$	$0.0048(12)$	$0.0110(13)$	$0.0077(13)$
C2A	$0.0375(17)$	$0.0438(17)$	$0.072(2)$	$-0.0002(13)$	$0.0056(15)$	$0.0108(16)$
C3A	$0.0514(19)$	$0.0434(17)$	$0.066(2)$	$-0.0011(14)$	$0.0099(16)$	$-0.0083(15)$
C4A	$0.0506(18)$	$0.0460(17)$	$0.0482(17)$	$0.0027(14)$	$0.0127(14)$	$-0.0042(14)$
C5A	$0.070(3)$	$0.049(2)$	$0.113(3)$	$-0.0075(18)$	$0.017(2)$	$0.017(2)$
C6A	$0.107(3)$	$0.062(2)$	$0.063(2)$	$-0.011(2)$	$0.042(2)$	$-0.0166(18)$
C1B	$0.0487(17)$	$0.0486(17)$	$0.0411(16)$	$0.0076(13)$	$0.0216(13)$	$-0.0017(13)$
C2B	$0.070(2)$	$0.0468(18)$	$0.0517(18)$	$0.0055(15)$	$0.0303(16)$	$-0.0021(14)$
C3B	$0.060(2)$	$0.0566(19)$	$0.059(2)$	$0.0166(15)$	$0.0256(16)$	$0.0068(16)$
C4B	$0.0501(18)$	$0.063(2)$	$0.0504(18)$	$0.0081(15)$	$0.0211(14)$	$0.0066(15)$
C5B	$0.092(3)$	$0.051(2)$	$0.083(3)$	$0.0023(19)$	$0.034(2)$	$-0.0080(19)$
C6B	$0.051(2)$	$0.090(3)$	$0.082(3)$	$0.0056(19)$	$0.0231(18)$	$0.018(2)$
Cu1	$0.0570(3)$	$0.0424(2)$	$0.0616(3)$	$0.00037(16)$	$0.0292(2)$	$0.00422(17)$
N1A	$0.0473(14)$	$0.0483(15)$	$0.0595(16)$	$-0.0005(12)$	$0.0157(12)$	$0.0126(13)$
N2A	$0.0429(13)$	$0.0409(13)$	$0.0426(13)$	$-0.0011(10)$	$0.0146(10)$	$0.0018(10)$
N1B	$0.0565(16)$	$0.0476(15)$	$0.0552(15)$	$0.0014(12)$	$0.0249(12)$	$-0.0074(12)$
N2B	$0.0477(15)$	$0.0521(15)$	$0.0501(15)$	$0.0017(12)$	$0.0197(12)$	$0.0034(12)$
S1A	$0.0828(6)$	$0.0531(5)$	$0.0510(5)$	$0.0106(4)$	$0.0351(4)$	$0.0078(4)$
S1B	$0.0495(4)$	$0.0485(5)$	$0.0521(4)$	$0.0070(3)$	$0.0142(3)$	$-0.0062(4)$
Br1	$0.0467(2)$	$0.0548(2)$	$0.0746(3)$	$0.01020(14)$	$0.02299(17)$	$0.02122(16)$

Geometric parameters ($A,{ }^{\circ}$)

C1A-N1A	$1.319(4)$	C2B-C3B	$1.381(5)$
C1A-N2A	$1.332(4)$	C2B-C5B	$1.498(5)$
C1A-S1A	$1.774(3)$	C3B-C4B	$1.375(5)$
C2A-N1A	$1.341(4)$	C3B-H1B	0.9300
C2A-C3A	$1.371(5)$	C4B-N2B	$1.346(4)$
C2A-C5A	$1.496(4)$	C4B-C6B	$1.501(5)$
C3A-C4A	$1.372(4)$	C5B-H2B	0.9600
C3A-H1A	0.9300	C5B-H4B	0.9600
C4A-N2A	$1.358(4)$	C5B-H3B	0.9600
C4A-C6A	$1.495(5)$	C6B-H5B	0.9600
C5A-H2A	0.9600	C6B-H6B	0.9600
C5A-H4A	0.9600	C6B-H7B	0.9600
C5A-H3A	0.9600	Cu1-N2A	$2.033(2)$
C6A-H7A	0.9600	Cu1-S1B	$2.3754(9)$
C6A-H5A	0.9600	Cu1-Br1	$2.4114(5)$
C6A-H6A	0.9600	Cu1-Br1	$2.4669(5)$
C1B-N2B	$1.315(4)$	Cu1-Cu1	$2.7801(7)$
C1B-N1B	$1.323(4)$	S1A-S1B	$2.0318(13)$
C1B-S1B	$1.798(3)$	Br1-Cu1	$2.4668(5)$
C2B-N1B	$1.342(4)$		
N1A-C1A-N2A	$127.9(3)$	C3B-C4B-C6B	$122.1(3)$
N1A-C1A-S1A	$110.3(2)$	C2B-C5B-H2B	109.5
N2A-C1A-S1A	$121.7(2)$	C2B-C5B-H4B	109.5

N1A-C2A-C3A	120.0 (3)
N1A-C2A-C5A	117.2 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	122.8 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	119.9 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	120.0
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	120.0
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	120.3 (3)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	116.5 (3)
C3A-C4A-C6A	123.2 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	109.5
H4A - $\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	109.5
C4A-C6A-H7A	109.5
C4A-C6A-H5A	109.5
H7A - $\mathrm{C} 6 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A}$	109.5
C4A-C6A-H6A	109.5
H7A - $\mathrm{C} 6 \mathrm{~A}-\mathrm{H} 6 \mathrm{~A}$	109.5
H5A-C6A-H6A	109.5
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	129.9 (3)
N2B-C1B-S1B	120.5 (2)
N1B-C1B-S1B	109.5 (2)
N1B-C2B-C3B	120.1 (3)
N1B-C2B-C5B	116.9 (3)
C3B-C2B-C5B	123.0 (3)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	119.3 (3)
C4B-C3B-H1B	120.4
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	120.4
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	121.2 (3)
N2B-C4B-C6B	116.7 (3)

$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{H} 6 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{~N} 2 \mathrm{~A}-\mathrm{Cu}-\mathrm{S} 1 \mathrm{~B}$	$90.77(7)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu}-\mathrm{Br} 1$	$122.47(7)$
$\mathrm{S} 1 \mathrm{~B}-\mathrm{Cu} 1-\mathrm{Br} 1$	$112.43(3)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu}-\mathrm{Br} 1^{\mathrm{i}}$	$108.72(7)$
$\mathrm{S} 1 \mathrm{~B}-\mathrm{Cu} 1-\mathrm{Br} 1^{\mathrm{i}}$	$110.22(3)$
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Br} 1^{\mathrm{i}}$	$110.523(16)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$138.63(7)$
$\mathrm{S} 1 \mathrm{~B}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$129.62(3)$
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$56.200(16)$
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Cu}-\mathrm{Cu} 1^{\mathrm{i}}$	$54.323(15)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$116.6(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$115.2(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1$	$122.05(19)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1$	$122.3(2)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$115.2(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$114.3(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{S} 1 \mathrm{~B}$	$105.86(11)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}-\mathrm{S} 1 \mathrm{~A}$	$104.42(11)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}-\mathrm{Cu} 1$	$101.24(10)$
$\mathrm{S} 1 \mathrm{~A}-\mathrm{S} 1 \mathrm{~B}-\mathrm{Cu} 1$	$99.01(4)$
$\mathrm{Cu} 1-\mathrm{Br} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$69.476(16)$

Symmetry code: (i) $-x+1 / 2,-y+1 / 2,-z+1$.

